If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2-8x-1=0
a = 11; b = -8; c = -1;
Δ = b2-4ac
Δ = -82-4·11·(-1)
Δ = 108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{108}=\sqrt{36*3}=\sqrt{36}*\sqrt{3}=6\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-6\sqrt{3}}{2*11}=\frac{8-6\sqrt{3}}{22} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+6\sqrt{3}}{2*11}=\frac{8+6\sqrt{3}}{22} $
| 1=0,3x-0.9x-35 | | 3+8x=3×2x-1 | | x/2+12=20 | | 12b-8+4b-6b=0 | | 3x+33/7=3 | | 201.6=-9(-9+x) | | 10^(x^2-2x+2)=100 | | (12/x)+5=(6/2x)+8 | | (y/8)=11 | | D=7W/R+7p | | (7/x+3)-5=(16/x+3) | | 1/9(4p+21)=1/3(2p+1) | | -6/5r+3r=1/34+22/3 | | 25^x-4=64 | | 6x+10=5x+19 | | -5x2+2x=0 | | 0.8x-18=1.4x-21 | | 9x2+12x+4=0 | | 8z+2-3z=10+4z-9 | | .07x=56 | | 4/7=28/x | | 1/4x+7=1/3x-8 | | 4^x-2=64 | | 4^5-3x=1/256 | | 2x+20=2x+10 | | 13h=14 | | x(x+7)=x+7 | | 1/2•c-8=4 | | 4^5-3x=1/156 | | |x|=-2 | | 84(y-15)=y+55 | | 6^x=1 |